

LIGHT METAL CASTING

PRODUCT OVERVIEW & APPLICATIONS

SILCA: MORE THAN 30 YEARS OF KNOW-HOW AND INNOVATION

SILCA is the international service and sales company of CALSITHERM group, specialising in high-temperature materials and lightweight thermal insulation in various applications. As the only German manufacturer of calcium silicate, we have proven over the past years that both safety and productivity can be continually improved through innovative products. From A for aluminium casting to D for domestic fireplaces and chimneys up to T for thermal treatment plants, we cover all areas of refractory technologies in a wide variety of industrial sectors. In addition to material supply, we offer a holistic service approach for technical demands and advancements. This includes technical consulting, engineering, material supply and complete services including assembly of high-temperature facilities.

With our companies SILCA Italia, SILCA Insulation (SEA) Malaysia, SILCA South Africa, SILCA Mexico and SRS Amsterdam we are operating on a worldwide basis.

Consistent quality requires the systematic cooperation of all parties involved in the processes of production, sales and application. In this manner, we develop efficient products that meet the high quality requirements of our customers. The basis for our quality and innovation is our know-how gained from more than 30 years of experience.

The key aspects of our success are the exceptional quality of our products, the high level of customer satisfaction as well as our motivated and qualified employees.

PRESSURE CASTING

Casting Launder
CALCAST CC155Gx; SILCAFUSE
Data sheets pages 15 and 17

Dosing Tube
SYALON 101
Data sheet page 18

3 Thermocouple Protection Tube
SYALON 101 + Clamping adapter,
cast iron with ceramic coating
Data sheets pages 18, 19 and 20

4 Heater Tube
SYALON 101 (with integrated flange or groove)
Data sheet page 18

Peripherals, Mechanics
SILCADUR BN450, SILCADUR HTP
Data sheets pages 26 and 27

6 Beads
SILCADUR PLG 200
Data sheets page 28

Individual solutions

LOW-PRESSURE CASTING

Sprue Bushes
CALCAST CC150, CC350,
CC155Gx, CC60
Data sheets pages 14, 15 and 16

2 Feeder Box
CALCAST CC350, CC155Gx
Data sheets pages 14 and 15

SILCAFUSE, CALCAST CC155Gx
Data sheets pages 15 and 17

4 Thermocouple Protection Tube
SYALON 101 + Clamping adapter
(also individual), enamelled grey
cast iron
Data sheets pages 18, 19 and 20

5 Riser Tube
SYALON 101, SiN, SILCATAN SM
Data sheets pages 18 and 21

Gaskets
SILCAFELT 130S,
SILCAWOOL 120 Paper
Data sheet page 22

Back Insulation
SILCAFLEX 126-13/
SILCAW00L 120P-128,
SILCAPOR 1000
Data sheets pages 23 and 25

Peripherals, Mechanics
SILCADUR BN 450, SILCADUR HTP
Data sheets pages 26 and 27

Individual solutions

GRAVITY CASTING

Ladles, Casting Ladle
SILCAFUSE, CALCAST CC155Gx
Data sheets pages 17 and 15

Risers

CALCAST CC150 + CC155Gx

Data sheets pages 16 and 17

Gaskets
SILCAFELT 130S,
SILCAWOOL 120 Paper
Data sheet page 22

Transport Ladle / Furnaces
CALCAST 500, SILCABOARD
126-26/-35, SILCAWOOL-BOARD
115-36A, Fiber lining (SILCAWOOL
120P-128, SILCAFLEX 126-13)
Data sheets pages 14, 23 and 24

Peripherals, MechanicsSILCADUR BN 450, SILCADUR HTP
Data sheets pages 26 and 27

Individual solutions

VDC BILLET CASTING

2 Hot Tops
CALCAST CC150, CC350,
CC155Gx, CC60
Data sheets pages 14, 15 and 16

3 Floaters + Nozzles
CALCAST CC100, CALCAST CC150,
CC155Gx, CC60
Data sheets pages 14, 15 and 16

Skim Dam
CALCAST CC155Gx, CC60
Data sheets pages 15 and 16

Sliders + Stopper Bars
CALCAST CC100, CC150, CC155Gx
Data sheet page 14 and 15

6 Channels + Cross Feeder
SILCAFUSE
Data sheet page 17

7 Launder Cover CALCAST CC500 Data sheet page 14

Thermocouple Protection Tube
SYALON 101 + Clamping adapter
(also individual), enamelled grey
cast iron
Data sheets pages 18, 19 and 20

Gaskets
SILCAFELT 130S,
SILCAWOOL 120 Paper
Data sheet page 22

Peripherals, Mechanics

SILCADUR BN 450, SILCADUR HTP Data sheets pages 26 and 27

Individual solutions

HDC BILLET CASTING

Sliders + Dams
CALCAST CC100, CC150, CC155Gx
Data sheets pages 14 and 15

Launder Cover
CALCAST CC500
Data sheet page 14

Bulkhead Board / Baffle Plate
CALCAST CC155G4
Data sheet page 15

Thermocouple Protection Tube
SYALON 101 + Clamping adapter
(also individual), enamelled grey
cast iron
Data sheets pages 18, 19 and 20

GasketsSILCAFELT 130S,
SILCAW00L 120 Paper
Data sheet page 22

Peripherals, Mechanics
SILCADUR BN 450, SILCADUR HTP
Data sheets pages 26 and 27

Individual solutions

CALCAST® CC 100-CC 500

CALCAST® is a high-temperature insulating ceramic based on calcium silicate. It has bulk densities of 860 to 1,200 kg/m³. The temperature limit is 1,200 °C. The material is not wetted by liquid NF-metals and is therefore an ideal material in casting applications with direct contact to liquid metal. **CALCAST®** insulates and is used to control the distribution of the metal.

CALCAST®		Method	Unit	CC.	100	CC	150	CC	350	CC!	500	
Upper application limit tempera	ture	EN 1094-6	°C	1,0	00	1,0	00	1,0	00	1,2	200	
Bulk density (± 10 %)		EN 1602	kg/m³	860		1,040		1,050		1,200		
Open porosity (in acc. with stand	dard)	EN 993-1	%	6	8	6	0	58		60		
Compression strength		EN 826	MPa	1	9	2	8	2	8	1	11	
Flexural strength		EN 12089	MPa	7	7	1	0	1	3		7	
Hardness		DIN 53505	Shore D	5	5	6	6	7	0	5	0	
Shrinkage after 12 h Length and width Thickness Length and width Thickness	750 °C 750 °C 1,000 °C 1,000 °C	EN 1094-6	%	0.	20 60 30	0.	05 20 12 70	0.	25 80 30	0.	05 40 .10 70	
Thermal conductivity λ at t_m $200 °C$ $400 °C$ $600 °C$ $800 °C$		EN 12667	W/(m K)	0.	0.24 0.26 0.27 0.32		26		0.27 0.29 0.30 0.35		0.22 0.24 0.26 0.30	
Specific thermal capacity			kJ/(kg K)	0.8 - 1.2 0.8 -		- 1.2	0.8	- 1.2	0.8	- 1.2		
Thermal expansion coefficient perpendicular to board plane parallel to board plane	20 °C to 750 °C		K ⁻¹ x 10 ⁻⁶	7.2	6.0	1 5.1	6.0	1 4.7	6.3	⊥ 3.7	// 5.9	
Chemical composition Calcium silicate hydrate (CaO-; MgO-; Al ₂ O ₃ -) Silicathydrat R ₂ O ₄ (R=Fe, Ti, K, Na)			%	97.5 - 98 97.5 - 98			95 - 97 - 1			- 97 I.5		
Loss on ignition			%	2.0	- 2.5	1.0	- 1.5	3.0	- 3.5		3	
Dimensions												
		Tolerances										
	Length	± 3	mm	1,250								
Standard sizes	Width	± 3	mm	1,000)							
	Thick- 0/+0.8 mm		nm 12.7/19.1/25.4/31.8/38.1/50.8/76.2/101.6									
	es machined.											

Dimensions							
		Tolerances					
	Length	± 3	mm	1,250			
Standard sizes	Width	± 3	mm	1,000			
Standard 312C3	Thick-	0/+0.8	mm	12.7/19.1/25.4/31.8/38.1/50.8/76.2/101.6			
	ness		111111	12.// 15.1/25.4/51.0/50.1/50.0//0.2/101.0			
	Surfaces machined.						
Other dimensions are available on request.							

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

CALCAST® 155 G4-G16

CALCAST® CC155 G4, G8 and **G16** are calcium silicate/graphite composites, which combine the mechanical and physical properties of graphite and calcium silicate. The results are materials with tailored and improved properties in regard to several high temperature applications, especially when used in casting processes with liquid aluminium.

CALCAST® CC155 G4, G8 and G16 reduces dramatically the wetting with molten metal. After contact with the metal nearly zero attachments of metal residuals are present. This reduces the transport of oxides into the casted part as well as the overall consumption of metal alloy.

CALCAST®		Method	Unit	CC 15	5 G4	CC 15	55 G8	CC 15	5 G16	
Upper application limit temperature		EN 1094-6	°C	1,000		1,000		1,000		
Bulk density (± 10 %)		EN 1602	kg/m³	1,150		1,100		1,050		
Open porosity (in acc. with standa	rd)	EN 993-1	%	5	5	5	5	60		
Compression strength		EN 826	MPa	2	4	2	2	18		
Flexural strength		EN 12089	MPa	1	1	1	0	Ö	}	
Hardness		DIN 53505	Shore D	7	0	6	5	6	0	
5	EN 1094-6 750°C 750°C		%	0.3		0. 0.8	25 80	0.27 0.75		
□ perpendicular to board plane ○ perpendicular to be	400 °C 500 °C 800 °C	EN 993-15	W/(m K)	⊥0.640.520.37	// 0.62 0.59 0.39	1.22 0.93 0.62	// 2.59 2.06 0.87	1.80 1.34 0.86	// 4.55 3.52 1.35	
⊥ perpendicular to board plane t	20 °C to 750 °C	EN 13471	K ⁻¹ x 10 ⁻⁶	⊥ 6.7	// 6.2	⊥ 5.9	// 4.7	⊥ 6.5	// 6.2	
Chemical composition Calcium silicate hydrate Graphite R _x O _x (R=Fe, Ti, K, Na) Loss on ignition			%	95 91 4 8 1 1 10 12		8 1	83 16 1			
Dimensions										
		Tolerances		1 250						
Standard sizes Width Thickness		± 3	mm	1,250						
		± 3	mm		1,000					
			mm	12.7/19.1/25.4/31.8/38.1/50.8/76.2/101.6						
	Surfaces machined.									
Other dimensions are available on request.										

CALCAST® CC 60

CALCAST® CC 60 is a carbon fibre reinforced calcium silicate, containing about 2 % carbon fibres with a maximum length of 6 mm. The material is suitable up to temperatures of 1,000 °C, is not wettable by liquid aluminium and well insulating.

CALCAST®		Method	Unit	CC 60	1
Upper application limit temperatu	ıre	EN 1094-6	°C	1,000)
Bulk density (± 10%)		EN 1602	kg/m³	850	
Open porosity (in acc. with standa	ard)	EN 993-1	%	60	
Compression strength		EN 826	MPa	25	
Flexural strength		EN 12089	MPa	10	
Hardness		DIN 53505	Shore D	70	
Oil absorption		internal test method	min	400	
Shrinkage after 12 h Length and width Thickness Length and width Thickness	750 °C 750 °C 1,000 °C 1,000 °C	EN 1094-6	%	0.7 1.3 0.9 1.8	
Thermal conductivity λ at t _m	200 °C 400 °C 600 °C 800 °C	EN 12667	W/(m K)	0.18 0.20 0.21 0.30	
Specific thermal capacity			kJ/kg K	0.8 - 1	.2
Thermal expansion coefficient	20 °C to 750 °C	DIN 51045-5	K ⁻¹ x 10 ⁻⁶	⊥ 6.4	6.4
Chemical composition Calcium silicate hydrate Carbon R_xO_x (R=Fe, Ti, K, Na) Loss on ignition			%	91 - 9. 1 - 2 0.5 6.5	
Dimensions					
Standard sizes	Length Width Thickness Surfaces m	Tolerances ± 3 ± 3 0/+0.8 achined.	mm mm	1,250 1,000 12.7/19.1/25.4/31.8/38.1/	/50.8/76.2/101.6
Other dimensions are available or					

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

SILCAFUSE 110-168

SILCAFUSE 110-168 are cast ceramic components based on silicate melt. **SILCAFUSE 110-168** has a very high resistance to thermal shock.

SILCAFUSE		Unit	110-168
Upper application limit temperature		°C	1,100
Bulk density		kg/m³	1,680
Compression strength		MDa	29
Flexural strength		MPa	18
Shrinkage after 12 h	750 °C	%	0
-	400 °C	\\/// \/\	0.47
Thermal conductivity λ at t _m	600 °C	W/(m·K)	0.49
Thermal expansion coefficient	1,000 °C	$K^{-1} \times 10^{-6}$	0.71
Chemical composition			
SiO ₂			98.5
CaO		%	1.4
Al_2O_3		70	< 0.1
Cristobalite content			< 0.6

SYALON 101, SIN

SYALON 101 and **SIN** are silicon nitride ceramics. Syalon 101 and SiN are wear-resistant ceramics synthesised based on silicon nitride. Typical applications in the foundry industry are as thermocouple protection tube, riser tube or heater tube in holding furnace.

		Unit	SYALON 101	SiN
Maximum operating temperature	Atm. inert / Atm. air	°C	1,200	1,300
Bulk density		kg/m³	3,210	3,150 - 3,300
Open porosity		%	0	-
Grain size		μm	0 - 10	-
Compression strength		MPa	3,000	2,500
Flexural strength		IVIPa	760	600 - 900
Weibull modulus			25	+
Fracture toughness		MPam ^{1/2}	8	7
Modulus of elasticity		GPa	320	300
Hardness	Vickers	UPd	16	80 - 85 (HRC)
Poisson's ratio			0.28	-
Thermal conductivity λ at t_m	20 °C	W/(m K)	30	20 - 50
Thermal expansion coefficient	0 - 1,000 °C	$K^{-1} \times 10^{-6}$	3.2	3.2
Thermal shock parameter R1	Critical temperature difference during rapid temperature changes		534	Ŧ
Thermal shock parameter R2	Thermal shock coefficient at constant temperature increase	W/m	16,031	+
Chemical composition				
Si ₃ N ₄			90	-
Al_2O_3		%	6	-
$Y_{2}O_{3}$			4	-

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

INSTRUCTIONS FOR ASSEMBLING THE CLAMPING ADAPTER

- 1) Upper part adapter, stainless steel with 3/4" NPT inner thread and G1"outer thread for connecting to lower part
- 2) Lower part adapter, connecting to upper part: G1"inner thread
- 3) Small graphite sealing ring
- 4) Large graphite sealing ring
- 5) Two stainless steel half shells for inserting into the mounting groove

Adapter assembly:

- Unscrew the adapter. In the lower part there are two half shells and a small graphite sealing ring.
- Please take out these parts.
- Place the 2 half shells around the mounting groove of the Syalon tube.
- Slide the lower adapter part from the lower (closed) side of the Syalon tube over the tube so that the G1" inner thread is visible at the top.
- Then put the small graphite ring back in, it now lies on the opening of the Syalon tube. By screwing on the upper part (with the large graphite ring around the G1\(\text{D}\) outer thread), the connection is screwed gas-tight.

THERMOCOUPLE PROTECTION TUBE MADE OF CAST IRON

Our cast iron thermocouple protection tubes offer good quality, long service life and low costs. They are ideal for use in melting and crucible furnaces, where heavy mechanical stress excludes expensive materials. They are suitable for aluminium, magnesium and zinc melts; preheating of the thermal protection tubes is not necessary.

Thermocouple protection tube		Unit	Cast iron
Upper application limit temperature	With ceramic protective layer	۰۲	800
Opper application innit temperature	Without protective layer	L	875
Dimensions			
Length			305 / 460 / 610 / 760 / 915 / 1065 / 1220 / 1370 / 1525 / 1830
Inner diameter		mm	20
Outer diameter			42
Thread type			NPT
Thread size		Inch	3/4
Other lengths are available on reques	t.		

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

SILCATAN SM

SILCATAN SM is a sintered aluminium titanate ceramic and is used in the aluminium industry as a riser tube.

SILCATAN		Unit	SM
Upper application limit temperature		°C	900
Bulk density		kg/m³	3,200 - 3,400
Open porosity		%	4 - 6
Flexural strength		MPa	≥ 35
Resistance to thermal shock	At 700 °C		Air and water quenching
Thermal conductivity $\boldsymbol{\lambda}$ at $t_{_m}$	20 °C	W/(m·K)	1.8
Thermal expansion coefficient		K ⁻¹ x 10 ⁻⁶	< 2.0

SILCAWOOL 120 / SILCAFELT 130S

SILCAWOOL 120 is a bio-soluble high-temperature fibre paper based on calcium magnesium silicate and is an alternative for aluminium silicate. Due to its bio-solubility, it is no longer classified as a hazardous substance. **SILCAFELT 130S** is a high-temperature fibre paper based on aluminium silicate.

High-temperature fibre paper		Unit	SILCAWOOL 120	SILCAFELT 130S
Classification temperature		°C	1,200	1,250
Bulk density		kg/m³	ca. 150	220 - 240
Shrinkage after 24h	1,200 °C	%	< 4	-
Jillilkage arter 2411	1,250 °C	70	-	< 4
	200 °C		0.05	-
	400 °C		0.08	-
Thermal conductivity ${\pmb \lambda}$ at ${\sf t}_{_{\sf m}}$	600 °C	W/(m·K)	0.11	0.08
	800°C		0.15	0.11
	1,000 °C		0.20	0.17
Chemical composition				
SiO ₂			61 - 67	50 - 54
Al_2O_3			<1	46 - 50
CaO + MgO		%	30 - 40	-
Other			< 2	< 0.45
Loss on ignition			< 12	< 12
Dimensions				
Length x Width x Thickness		mm	40,000 x 1,000 x 1* 20,000 x 1,000 x 2* 10,000 x 1,000 x 3* 10,000 x 1,000 x 4* 10,000 x 1,000 x 5 10,000 x 1,000 x 6* 10,000 x 1,000 x 8 10,000 x 1,000 x 10	40,000 x 1,000 x 1* 20,000 x 1,000 x 2* 10,000 x 1,000 x 3 10,000 x 1,000 x 4 10,000 x 1,000 x 5* 10,000 x 1,000 x 6 10,000 x 1,000 x 8 10,000 x 1,000 x 10

^{*500} mm width available on request

SILCAWOOL 120P-128 / SILCAFLEX 126-13

SILCAWOOL 120P-128 is a bio-soluble high-temperature fibre blankets based on calcium magnesium silicate. **SILCAFLEX 126-13** is based on aluminium silicate. Both products are particularly flexible, needled on both sides and contain no organic binding agents.

High-temperature fibre blankets		Unit	SILCAWOOL 120P-128	SILCAFLEX 126-13
Classification temperature		°C	1,200	1,260
Bulk density		kg/m³	128	128
Shrinkage after 24h	1,200 °C	%	≤ 1.0	-
	200 °C		0.05	0.06
	400 °C		0.08	0.10
Thermal conductivity λ at $t_{_m}$	600 °C	W/(m·K)	0.12	0.15
	800 °C		0.18	0.20
	1,000 °C		0.25	0.27
Chemical composition				
SiO ₂			62 - 68	53 - 58
Al_2O_3		%	<1	42 - 47
CaO + MgO		70	29 - 39	-
Other			<1	-
Dimensions				
Length x Width x Thickness		mm	5,500 x 610 x 6 14,640 x 610 x 13 9,760 x 610 x 19 7,320 x 610 x 25 4,880 x 610 x 38 3,660 x 610 x 50	21,960 x 610 x 6 14,640 x 610 x 13 9,760 x 610 x 19 7,320 x 610 x 25 4,880 x 610 x 38 3,660 x 610 x 50

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

SILCABOARD 126-26, 126-35 SILCAWOOL-BOARD 115-36A

SILCABOARD products are high-temperature fibre boards based on aluminium silicate. **SILCAWOOL** products are a bio-soluble alternative to aluminium silicate fibres based on calcium magnesium silicates. **SILCAWOOL** products are therefore no longer classified as hazardous substance.

High-temperature fibre boards		Unit	SILCABOARD 126-26	SILCABOARD 126-35	SILCAWOOL-BOARD 115-36A				
Classification temperature		°C	1,200	1,200	1,150				
Bulk density		kg/m³	300	390	380				
Cold compression strength		MPa	-	-	0.5				
Cold flexural strength		MPd	> 0.7	> 0.8	-				
Linear shrinkage after 24h	1,000°C	%	< 4.0	< 4.0	-				
	200°C		-	-	0.09				
	400°C		-	-	0.10				
Thermal conductivity λ at $t_{_m}$	600°C	W/(m K)	0.09	0.13	0.13				
	800°C		0.13	0.16	0.18				
	1,000°C		0.17	0.19	0.25				
Chemical composition									
SiO ₂			50 - 58	50 - 58	72.0				
Al_2O_3			42 -50	42 -50	6.0				
CaO + MgO		%	-	-	27.0				
Other			< 0.45	< 0.45	2.0				
Loss on ignition			< 7.0	< 9.0	5.5				
Dimensions									
Length			1,0	00	1,200				
Width		mm	61	0	1,000				
Thickness			30 / 40 / 50	10 / 20 / 25	20 / 25 / 40 / 50				
Other dimensions are available	Other dimensions are available on request.								

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

SILCAPOR 1000

SILCAPOR 1000 is a micro-porous thermal insulation material based on pyrogenic silicic acid. **SILCAPOR 1000** is available in a raw, unlaminated variant as well as completely laminated with aluminium foil.

SILCAPOR			Unit	1000
Classification temperatu	re		°C	1,000
Bulk density			kg/m³	280
Cold compression streng	th		MPa	0.67
Linear shrinkage after 24	h	1,000 °C	%	≤ 2.5
		200 °C		0.022
Thermal conductivity λ a	+ +	400 °C	W/(m·K)	0.023
Thermal conductivity X a	L L _m	600 °C	VV/ (111 IX)	0.027
		800 °C		0.034
		200 °C		0.86
Specific heat capacity		400 °C	kJ/(kg·K)	0.94
Specific fleat capacity		600 °C	K)/ (Kg K)	0.96
		800 °C		0.99
Chemical composition				
SiO ₂				55 - 80
SiC			%	15 - 30
Other				5 - 15
Loss on ignition			%	< 2.0
Dimensions				
		Tolerances		
Standard sizes	Length	± 3	mm	1.000
Standard SIZES	Width	± 3	mm	650
	Thickness	± 1	mm	10 / 20 / 25 / 30 / 40 / 50
Other dimensions are av	ailable on requ	est.		

SILCADUR BN 450

SILCADUR BN 450 is a highly concentrated, water-based boron nitride dispersion / industrial coating.

SILCADUR BN 450 is mainly used in the aluminium casting sector.

Properties:

The dispersion significantly reduces the adhesion of molten aluminium to refractory components and tools. The refractory binding agent in **SILCADUR BN 450** ensures good surface adhesion of the coating, which therefore exhibits low abrasion.

The **SILCADUR BN 450** coating is temperature resistant up to 900°C in atmospheric air.

Typical application areas:

Coating of channels, distributors, skimming frames, hot head rings in the continuous casting sector and of tools in the low-pressure casting sector.

Recommended for processing:

SILCADUR BN 450 dispersion should be stirred before use and diluted with water depending on the application.

For spray application, a mixing ratio of 1:5 is recommended and for dipping or brushing application, a mixing ratio of 1:3 is recommended.

The dispersion should only be applied on clean, dust and oil-free surfaces.

To ensure complete surface adhesion, the component/tool to be coated should be provided with thin and completely covering coatings.

It must be ensured that the coated product is completely dry before it comes in contact with the melt.

Technical data:

According to your needs, SILCADUR BN 450 is available in blue or white/light colour.

The concentration is 1.8g/cm³ and the pH value lies between 3-5. The solid content as delivered is approximately 45%.

Storage:

SILCADUR BN 450 must be stored in the original packaging and under suitable dry conditions and protected from frost. Further information can be found on the original container.

The properties mentioned are typical values obtained according to the listed methods. Product variations have to be taken into account. The data do not represent guaranteed properties and cannot be used for any warranty claim. Data are subject to technical modifications.

SILCADUR HTP

SILCADUR HTP is a high-temperature paste based on graphite which is intended to facilitate the dismantling and assembly of components after a long production period. **SILCADUR HTP** prevents the burning of screw connections, bolts and hinges.

SILCADUR HTP paste can also be used for the lubrication of chains and moving parts in non-ferrous pressure casting and low-pressure casting moulds.

SILCADUR	Unit	НТР
Upper application limit temperature	°۲	1,100
Lower application limit temperature	L	-25
Dropping point as per DIN ISO 2176		None
NLGI class		1
Transport ADR/SDR		No dangerous goods
Container		Can of 1 kg

SILCADUR PLG 200

SILCADUR PLG 200 is a dry lubricant for piston casting and casting chambers in pressure casting. **SILCADUR PLG 200** is easy to dose automatically and has an outstanding capillary effect at the same time with minimal dosage. **SILCADUR PLG 200** is dust-free and does not form flames during application.

SILCADUR	Unit	PLG 200	
Solidification point	°C	98 - 105	
Bulk density	kg/dm³	0,65 - 0,72	
Solid content	%	18 - 23	
Particle size	μm	1850 – 2050 (oval)	
	μm	1550 – 1850	
	μm	950 – 1550	
	μm	450 – 950	
	μm	320 – 450	
	μm	< 320	
Solid lubricant		Highly pure micronised natural graphite in combination with a synergistic solid mix	
Shape		Ball-shaped	
Trägersystem		Synthetic wax with a high solidification point and extremely low melt viscosity	

SILCA Service- und Vertriebsgesellschaft für Dämmstoffe mbHElberfelder Str. 200a, 40822 Mettmann

Telefon: +49 2104 9727-0 | Fax: +49 2104 76902 www.silca-online.de